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Because it is Complementary!

• In an era where we will be producing events at 8 TeV CM 
Energy WHY would you ever want an 8 GeV program? 
– There is physics that you cannot do at ultra-high 

energy scale proton machines
• e.g. Neutrino beams 

– Low energy experiments can help unravel high energy 
experimental mysteries
• e.g. the high Q2 HERA events could not have been 

leptoquarks -- the Atomic Parity Violation data 
ruled it out!

– Stringent limits on “forbidden” low energy processes 
can probe energy scales not accessible to the colliders
• e.g. neutron electric dipole moment



Topics Covered

• A physics program based on 8 GeV protons from the 
Booster or a Proton Driver (linear or circular) will likely 
fall into one or more of the following categories
– Neutrino Physics
– Fundamental Neutron Physics
– Muon Physics

• In all cases, high intensities will be required in order to 
create a state of the art facility.
– What might be achieved with the Booster?
– What more could be done with a Proton driver? 



What can we do with what we have?

• Enormous progress has been made recently on increasing 
the output from the Booster

• However the physics potential of NuMI and MiniBooNE 
make it worth the effort to push as high as we can.

• Even greater output is possible but we can only go so far
– These experiments represent a great starting point for 

high intensity programs at both high and low energies
– The Booster will hopefully be able to meet their needs 

in the short term
– A Proton Driver not only allows the programs to 

advance but opens up other interesting possibilities



Proton Availability – Near Term
• Booster Now

– ~5e16 p/hr (limited by tunnel activation)
– ~5e12 p/cycle maximum sustainable intensity
– 6.5 Hz maximum beam cycle rate @ 5e12 p/cycle = 1.2e17 p/hr
– 1.8e17 p/hr (Shielding Assessment limit) = 5e12 @ 10 Hz 

• Pbar Production + Full MiniBooNE (Booster limit → 1.2e17 p/hr)
– 5e12 @ (0.5+5.0) Hz = 1.0e17 p/hr
– 5e12 @ (1.0+5.0) Hz = 1.1e17 p/hr (with slip-stacking)

• Pbar Production + NuMI
– 5e12 @ (1.0+2.5) Hz = 6.3e16 p/hr
– 5e12 @ 3.0 Hz = 5.4e16 p/hr available to MiniBooNE

• NuMI will want to increase protons to the MI
• MiniBooNE will want to increase rep rate



Proton Availability – Medium Term
• Increase rep rate to 10 Hz (Booster limit → 1.5e17 p/hr)

– Full 9E16 p/hr rate for MiniBooNE/BooNE
• Introduce fast stacking in MI for NuMI and Pbar and raise 

Booster limit to SA value of 1.8e17 p/hr
– MI must handle 6E13 p/cycle
– Minimum MI Cycle time goes to 2.27 sec
– MI gets 5e12 @ 5.3 Hz = 9.5e16 p/hr
– 8 GeV users can get 8.5e16 p/hr (still OK for BooNE)

• Shorten MI acceleration cycle to 1 sec (few $10M’s)
– Minimum MI Cycle time goes to 1.8 sec
– MI gets 5e12 @ 6.7 Hz = 1.2e17 p/hr
– 8 GeV users can get 6.0e16 p/hr (probably adequate)



Proton Availability – Far Term

• Eliminate MI fill time??
– Booster fills recycler while MI is accelerating

• Assumes the recycler is not being used for P-bar’s
– Recycler is used to do slip-stacking and to fill the MI
– Minimum MI cycle time is reduced to 1 sec.
– 12 x 5e12 Booster batches per second exceeds both the 

Booster SA limit and the assumed rep-rate limit
• Assume maximal Booster i.e. 5e12 @ 15 Hz = 2.7e17 p/hr

– MI gets 5e12 @ 12 Hz = 2.2e17 p/hr
– 8 GeV users can get 5.4e16 p/hr
– Is this even possible?

• Additional gains will require a new proton source



Summary of Possible Booster Output
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Recap
• The present facility can be made to meet the needs of 

MiniBooNE
• NuMI goals are challenging and may require significant 

MI and possibly Booster upgrades 
• MiniBooNE and NuMI will be able to live together but as 

time goes on and demand goes up, there are significant 
issues that must be addressed. 

• Upgrading to 10 Hz (if radiation can be controlled) will 
make a MiniBooNE successor possible.

• A fast slip-stacking scheme (if it can be done) will greatly 
benefit NuMI and leave sufficient protons for BooNE etc. 

• Further increasing the MI’s output will significantly reduce 
protons to any 8 GeV users.

• In the long term the only solution is a new proton driver 



Proton Driver Machine Characteristics

1.925.40E+18101.50E+141,0008SC Linac

0.481.35E+18152.50E+131.68PD synchrotron

0.102.70E+17155.00E+121.68Booster (Max)
0.041.17E+176.55.00E+121.68Booster (2005)

(MW)(Hz)(µs)(GeV)

PowerP/hrRep RateP/pulsePulseEnergy

Protons available to 8 GeV programs running with the MI

1.734.86E+1891SC Linac
0.298.10E+1796PD synchrotron
0.025.40E+16312Booster (Max)
0.025.40E+1633.5Booster (2005)
(MW)(Hz)(Hz)

PowerP/hr8 GeV pulsesMI pulses

15 - 90 times what we can get from the Booster!!



Physics Potential with Low Energy Protons
ν Can comfortably support any MiniBooNE follow on 

experiments together with MI operations.
n Provides sufficient additional beam power to produce a 

world class neutron source dedicated to experiments in 
particle physics
– Address fundamental questions in our field
– Are on the scale of small HEP experiments

µ Provides sufficient additional  beam power to produce high 
intensity low energy muon beams
– Beyond the Standard Model searches
– Muon collider R&D

• These are just the examples that we have thought of now
• Great physics at relatively low cost and low risk



Low Energy Neutrino Physics
• MiniBooNE hopes to complete its neutrino running some 

time in 2005 ( after NuMI start up ).
• If MiniBooNE sees a signal then precise measurements 

will be required (BooNE)
– An upgrade to two "MiniBooNE-type" detector sites
– There may be more than one "MiniBooNE-type" 

detector at the new location (under discussion) 
– The needs will be for about the same rates as 

MiniBooNE receives now (no significant upgrades to 
the beam)

– If the new proton driver "hooks in" at the same place 
as the present 8 GeV line, then the set-up is in place. 



What if MiniBooNE sees a signal? .. Exciting!
• The present data cannot be fit with just 3 neutrinos
• The favored extensions to the Standard Model assume sterile neutrinos 

Allowed regions for 3+1 
models given LSND and Null 
Short BaseLine experiments



• But multiple sterile neutrinos are likely to be involved
• It will require much study to understand this new situation. Fermilab 

should position itself to be able to follow up.



Other Interesting Neutrino Experiments

• FINeSE – Measuring the strange spin of the proton
– Proposal in progress: An example of “Build it and they 

will come”
– Cheap and simple 10 ton detector placed 100 m 

downstream of the BooNE decay pipe
– Neutrino running parasitic on MiniBooNE with 

comparable intensity requirements.
– Will help reduce MiniBooNE’s flux errors
– Provide useful information on NC x-section for NuMI

• Other proposals are likely assuming the low energy 
neutrino beam is still available late in the decade.



Neutrino Magnetic Moment

(MeV)

• Non-zero neutrino magnetic 
moment, µ, is indicative of 
physics beyond the standard 
model.

• Theories with extra dimensions 
predict large ( µ ≲ 10-11 µB ) 
magnetic moments

• Can be detected through an 
extra contribution to the 
neutrino-electron scattering x-
section coming from a photon 
exchange as well as the normal 
Z exchange.



Neutrino Magnetic Moment (cont.)

• Current best measurement by LSND µ < 6.8 × 10-10 µB
• MiniBooNE hopes to make a modest improvement over 

the LSND result ( µ ≲ 4 × 10-10 µB )
• To reach sensitivities of order 10-11 µB will require

– a detector sensitive to electron recoil energies ≥ 1 MeV
– An order of magnitude more beam than is available 

with the current facility
• See thesis of Bonnie Fleming for details 

(http://home.fnal.gov/~bfleming/thesisprint.html)
• To take advantage of the extra intensity available with a 

PD the current 8 GeV target station and beamline will need 
to be upgraded



A Neutron Source for Particle Physics

• Can address many fundamental questions such time-symmetry 
violation, baryon number conservation, parity violation in strong 
interactions, right-handed weak currents, and quantum mechanics at 
the macroscopic scale. [Nucl. Inst. & Meth. A440 (2000) 471]

• Optimize source design for specific particle physics experiments
unlike existing facilities dedicated to neutron scattering experiments.

• Make a long ( 400 µs ) pulsed source
– Requires short, high intensity proton pulse
– Complementary to existing short (40 µs) pulsed sources.

• Advantages:-
– High peak intensities
– Can use TOF techniques to measure neutron energies 
– Reduced backgrounds due to low duty factor



Existing and Proposed Neutron Sources

0.0060.658.0GeV, 15Hz0.48Long-pulsedPD synchrotron

0.00260.078.0GeV, 15Hz0.04Long-pulsedBooster

FNAL
0.120.33.0GeV, 25Hz1.00Short-pulsedJHF (JAERI)

0.0022.51.3GeV, 50Hz6.50Short-pulsedESS (PSI)

Proposed
0.00240.71.0GeV, 60Hz2.00Short-pulsedSNS* (ORNL)

0.0020.060.8GeV, 50Hz0.16Short-pulsedISIS (Rutherford)

0.0010.040.8GeV, 20Hz0.10Short-pulsedLANCE (LANL)

1.01.00.6GeV1.30SteadySINQ (PSI)

1.015.0D2O Reflector60SteadyILL (Grenoble)

1.013.0Be Reflector100SteadyHIFR (ORNL)

Existing
(1014 n/cm2-s)(MW)

Duty FactorTime-Avg. FluxParametersPowerBeam TypeSource

* Projected to turn on in 2006



Neutron Electric Dipole Moments
• CP violation in flavor-conserving channels would be clear indication 

of new physics
• Extensions to Standard Model such as extra Higgs, right-handed 

currents, or SUSY can give rise to EDM
– dn ~ 10-25 - 10-27 e-cm

• Best measurement to date
– P.G. Harris et al, Phys Rev Lett 82 (1999)
– ISIS at RAL
– |dn| < 6.3 × 10-26

– Probes energy scales beyond the reach of colliders
• Two methods used

– EDM coupled to an external electric field
– EDM coupled to atomic fields during Bragg scattering in crystals

• Magnetic resonance techniques used to detect precession of the EDM



EDMs with External Fields

• Current best result is based 
on 1st method

• Can Improve sensitivity of 
by using trapped ultracold
neutrons to maximize time 
spent in the electric field

• Need pulsed source and 
TOF to reject higher energy 
background neutrons

• With even 100 MeV TOF 
resolution orders of 
magnitude improvements 
could be obtained in S/N 
ratio



EDMs from Bragg Scattering

• Atomic E-fields are much greater than those generated in 
the lab

• Time spent in the field is much shorter
• Increasing the sensitivity of the method depends on the use 

of multiple Bragg scatters
• Made possible by using perfect silicon crystals
• To isolate EDM compare results from both 1.92 Å and 

3.84 Å neutrons
– Both scatter in Si but respond differently to an EDM 

precession
– Use TOF to separate the two wavelengths



Neutron Beta Decay
• Provides a  precision measurement of |Vud|

– Need to measure the neutron lifetime, τ, and the ratio of the vector and 
axial vector couplings λ = gA/gV

– 1/τ = 0.1897 |Vud|2 ( 1 + 3λ2 ) ( 1 + 0.0739 ± 0.0008 )
• accurate at the 10-4 level

• λ is determined by measuring 
the beta asymmetry from 
polarized neutrons

• The current experimental 
situation is unclear with 
measurements forming two 
separated clusters.

• Both τ and λ measurements are 
well suited to a long pulse 
source



Physics with Low Energy Muon Beams

• Muon system is an excellent place to look for physics 
beyond the standard model

• There has been considerable interest in pushing the limits 
on LFV processes µ → eγ decays and µ → e conversion in 
nuclei

• Good examples of existing muon facilities are:-
– The AGS (24GeV, 0.06MW) provides a pulsed muon

source of ~ 1011 stopped muons/sec
• Suitable for µ → eγ decay searches

– The PSI cyclotron (590MeV, 1.0MW) produces a 
continuous beam of up to 108 stopped muons/sec

• Suitable for µ → e conversion searches



Lepton Flavor Violation

• New experiments are currently under 
construction to address both processes

• MECO at AGS for m → e conversion
– Current limit 10-12
– expect a sensitivity of 10-16
– SUSY predictions ~10-15

• MEG at PSI for m → eg decay 
– Current limit 10-11
– expect a sensitivity of 10-14
– SUSY predictions ~10-13 

• Both experiments are expecting to 
take data in the latter half of the 
decade



Muon Source at FNAL?
• A Proton Driver of the types proposed would be capable of 

producing more intense beams than at existing facilities
• The physics case will depend strongly on what is learnt 

from MECO and MEG
– Will a new generation of experiments be necessary? 

They could discover something!
– If new generation experiments are called for … will the 

needed advances be in the muon source or in the 
detectors themselves

• Future progress could be coupled to the development of a 
front-end to a neutrino factory based on muon decays.



Concluding Remarks

• The Booster WILL max out
• A Proton Driver will provide a future for the lab’s growing 

neutrino program
• It will provide the lab with the flexibility to respond to 

possible discoveries in the current program
• It also opens up possibilities for other new facilities 

attracting new user communities
• A surprising amount of work has been done to produce the 

present level of physics and machine studies
• Further progress will depend on an indication from the 

lab that it is serious
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